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A distinguishable and observable physical property of naked singular regions of the spacetime formed

during a gravitational collapse has important implications for both experimental and theoretical relativity.

We examine here whether energy can escape physically from naked singular regions to reach either a local

or a distant observer within the framework of general relativity. We find that in the case of imploding null

dust collapse outgoing singular null geodesics including the Cauchy horizon can be immersed between

two Vaidya spacetimes as null boundary layers with nonvanishing positive energy density. Thus energy

can be transported from the naked singularity to either a local or a distant observer. An example

illustrating that similar considerations can be applied to dust models is given.
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I. INTRODUCTION

A star with sufficient remnant mass (* 3M�), on com-
pletion of its nuclear fuel cycle, must enter the phase of a
continuous gravitational collapse. Once the nuclear fuel is
exhausted, gravitational forces become all powerful and
hence the star’s internal pressure cannot sustain the equi-
librium resulting in a continued collapse [1,2]. In the late
stages of collapse, the gravitational forces become domi-
nant and the physics of collapse is determined mainly by
the theory of general relativity. Under quite general and
physical situations, general relativity predicts that such a
collapse must end in a singularity, i.e., a region of space-
time with extreme curvatures [3–5]. Physically one could
describe singularity as a region of space with vanishing
volume and unbounded gravitational forces. General rela-
tivity, however, does not say anything about the nature or
physical properties of such a singularity. This is partially
due to the fact that mathematical structure breaks down,
preventing analysis at and beyond the singularity. One
could perhaps argue that as collapse progresses and matter
is condensed in a region comparable to Planck length, the
quantum physical properties of spacetime would become
dominant, thus preventing the formation of singularity. But
this picture may not hold, since gravity as a force is very
different in its nature in comparison to other forces and has
a geometrical interpretation as curvature of spacetime.
Moreover, despite numerous efforts, a viable quantum
theory of gravity is not in sight. Hence, for such regions
of spacetime, whether relativity theory or quantum physics
would determine the physics is still an open question.

To fill in the gap in our understanding of spacetime
singularities in a mathematical, consistent manner, a

cosmic censorship conjecture that all gravitational collapse
must end in a black hole was proposed [3,6]. The physical
consequence of such a hypothesis is that even before the
formation of a singularity, a trapped surface develops,
covering the singularity from the outside world. Hence,
from a physical point of view singularity is hidden from the
outside world. Initial studies in censorship were directed
towards formulating the conjecture in a mathematically
precise manner which could then possibly be proven [7].
This also led to formulation of other conjectures, like hoop
conjecture by Kip Thorne and Siefert’s conjecture [8,9].
However, extensive studies in collapse with various forms
of matter fields have shown that under fairly generic,
reasonable physical conditions, both naked singularity
and black holes would form as an end state of collapse,
depending on various initial and boundary conditions [10].
It is still not very clear how to classify either matter or the
initial and boundary conditions in a satisfactory way which
would end in either state of singularity (naked or covered).
Thus, from the studies this far, almost all physically rea-
sonable matter fields lead to both naked and covered
singularities during collapse (see, [11,12], and references
therein).
Considerable work has since been done on naked singu-

larities not only from the point of view of giving counter-
examples to cosmic censorship, but also on the study of
their nature and structure. Having established their exis-
tence, it is important to study the phenomena of formation
of naked singularity from a more astrophysical perspective.
One could look for a possible observable signature of
naked singularity distinguishing them from other compact,
strong gravity objects, like black holes. In the studies
carried out thus far, the stress has been toward showing
that for a naked singularity to be ‘‘observable,’’ a family of
lightlike geodesics must terminate at the singularity
[13,14]. Optical appearance and redshift for such possible
radiation has also been studied [15]. However, from the
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point of view of general relativity the first null ray coming
out of singularity forms a Cauchy horizon (CH), and the
spacetime model cannot remain valid after its formation.
Therefore, without any consistent extension of spacetime
beyond CH, the validity and usefulness of all such geodesic
analysis becomes doubtful. The basic question of the ex-
istence of the spacetime structure after the CH is unad-
dressed (it is difficult to provide extensions of spacetimes,
for example, even for shell-crossing singularities which are
gravitationally weak [16]), which is of utmost importance
if we want to talk about families of geodesics ending at
singularity in the past, making it a possible astrophysical
source.

In this paper, we wish to study the structure of the
spacetime from this perspective. Is it possible to connect
the two spacetimes before and after with CH as the bound-
ary? Can the resulting spacetime after the CH has formed
still have the same symmetry? Does relativity theory allow
such continuation of spacetime through CH and do bound-
ary conditions pose any restrictions? Furthermore, can
these boundary layers carry energy from naked singularity
to a distant observer? Earlier Hiscock et al. has considered
a model spacetime in which CH ultimately becomes the
event horizon of the Schwarzschild black hole with non-
vanishing surface energy density, and where it could be
visible to observers falling into the black hole [17].

If indeed the formation of a naked singularity is a
physical phenomenon, then the CH would represent a
null surface layer emanating from the naked singularity,
and reaching the distant observer separating the two
spacetimes. It has been suggested in various studies that
naked singularities may be responsible for various high
energy phenomena in our universe (for example gamma
ray bursts etc. [18]). It has also been suggested that in the
late stages of collapse, when spacetime shrinks to size of
the order of Planck length, quantum effects would play a
dominant role resulting in either a burst of particle crea-
tion or preventing the formation of singularity altogether
[19]. Our aim in this paper is to examine two examples of
naked singularities within the framework of general rela-
tivity and whether this allows such a scenario as emission
of a impulsive null wave carrying energy from the naked
singularity. The result of such a study would have mani-
fold implications. First, does there exist a spacetime after
the formation of a naked singularity which can be joined
satisfactorily together with the original model separated
by the null shockwave (CH)? If such a spacetime exists,
does it allow the existence of outgoing families of geo-
desics terminating at the singularity in the past? Second,
and equally important, question is the structure of the CH
itself. Is this null surface ‘‘boundary layer’’ allowed to
carry huge amounts of energy along the null ray to distant
observer? And, if the answer is in affirmative, what is its
structure and can this scenario be called a valid solution to
the Einstein equations?

II. A COLLAPSING STAR

Despite numerous exact solutions of the field equations,
very few exact solutions of the field equations exist which
can describe a physically reasonable collapsing matter
cloud. In fact, in nearly all the studies of spherically
symmetric collapse, the key models are either Lemaı̀tre -
Tolman-Bondi metric (LTB) [20] or the Vaidya spacetime
[21]. Both these spacetimes have been well studied, and
very well may be the only physically reasonable exact
solution available. In all such studies it has been shown
that there are out going null and time like geodesics which
terminate at the naked singularity in the past. The visibility
of the singularity in terms of a roots equation whose roots
are tangents to the outgoing radial null geodesics with past
end points at the singularity. Therefore, problem of relating
initial data with end state of collapse is reduced to finding
roots of a polynomial equation [14,22].
We would first take up the Vaidya spacetime. Existence

of naked singularity in this model is well established [23].
In particular, for the case of a imploding shell with a linear
mass function MðvÞ ¼ �v, for � � 1=8 singularity is
known to be a naked singularity.
The metric describing a spherically symmetric Vaidya

spacetime is given by

ds2 ¼ �
�
1� 2MðvÞ

r

�
dv2 þ 2dvdrþ r2d�2; (1)

where d�2 ¼ d�2 þ sin2�d�2. For linear mass function
case 2MðvÞ ¼ �v, and the singularity formed at v ¼ 0,
r ¼ 0, is naked iff:

x2 � x

�
þ 2

�
¼ 0 (2)

has real and positive root where x ¼ v
r . It follows that for

� � 1=8, the above has two real and positive roots, namely
ð�;�Þ, �> � given by

� ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8�

p
2�

; � ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8�

p
2�

: (3)

CH is the first null geodesic given by

v ¼ �r: (4)

While a family of geodesics which terminate at the singu-
larity in the past with the tangent x ¼ � are given by

r ¼ V
ð�� xÞ�=ð���Þ

ðx� �Þ�=ð���Þ : (5)

Where V is a parameter (constant along outgoing null
geodesics) labeling different geodesics of the family.
Once the singularity forms the spacetime below the CH

is described by the metric above. However, if the further
analysis of family of geodesics is to be valid, then the
spacetime beyond CH must also be described by similar
metric with CH as the boundary between the two solutions.
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If such a collapse scenario is to be called a solution of the
field equations, the two Vaidya spacetimes separated by the
CH (null hypersurface layer) must form a smooth solution.
Hence, the thin null shell with the stress energy should be
matched with two spacetimes before and after. Barrabès
and Israel (and Poisson) have analyzed in detail the con-
ditions for immersion of such null surface layers between
two general spherically symmetric spacetimes. To imple-
ment our model, we follow the prescription of matching
across null hypersurface by Barrabès and Israel [24] (see
also Poisson [25]).

Let the two spacetimes separating the first singular light
ray (CH) be given by �þ before and �� after (see Fig. 1).
We can describe the spacetime metric across CH in the
following form

ds2I ¼ �ð1� �þxþÞdu2þ þ 2duþdrþ r2d�2 (6)

ds2II ¼ �ð1� ��x�Þdu2� þ 2du�drþ r2d�2 (7)

where xþ ¼ uþ=r and x� ¼ u�=r. Here region I and
region II correspond to spacetime before and after forma-
tion of CH, respectively. In order to glue these two Vaidya
spacetimes along the null hypersurface � (CH) we should
have

xþ ¼ �þ ¼ 1

2�þ
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8�þ
p �;

duþ
dr

¼ 2

ð1� �þxþÞ
���������

; (8)

in spacetime I, and

x� ¼ �� ¼ 1

2��
½1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 8��
p �;

du�
dr

¼ 2

ð1� ��x�Þ
���������

(9)

in spacetime II. On the boundary we have from continuity

uþj� ¼ �þ
��

u�
���������

: (10)

Defining tangent vectors on the CH:

ka � eað1Þ ¼
�

2r

ðr� �þuþÞ ; 1; 0; 0
����������

; region I

ka � eað1Þ ¼
�

2r

ðr� ��u�Þ ; 1; 0; 0
����������

; region II

and

eað2Þ ¼
@

@�
; eað3Þ ¼

@

@�
; (11)

for region I & II. Where y� ¼ ðr; �; �Þ are the intrinsic
coordinates on � (� ¼ 1; 2; 3) and we take r to be the
parameter of the null generator. The transverse vectors
completing the basis for region I and II are given by

Na ¼
�
0;� 1

2

�
1� �þuþ

r

�
; 0; 0

����������
; region I

Na ¼
�
0;� 1

2

�
1� ��u�

r

�
; 0; 0

����������
; region II

satisfying

NaN
a ¼ 0; Nak

a ¼ �1; Nae
a
ðAÞ ¼ 0; (12)

and where ðAÞ ¼ f�;�g. The transverse curvature C�
AB, and

the intrinsic metric of the surface layer (�AB) is given by

�ABdx
AdxB ¼ r2ðd�2 þ sin2�d�2Þ; (13)

and

CAB ¼ �N�e
�
ðAÞ;�e

�
ðBÞ: (14)

We find the surface energy density and pressure of the null
layer for Vaidya case as

� ¼ �ABCAB ¼ ½M�
4	r2

¼ �þuþ � ��u�
4	r2

;

p ¼ ½hð�;MÞ�: (15)

First, we note that hð�;MÞ quantifies a jump in pressure
across the CH. Since it is transverse component to Cauchy
surface, it does not affect the physics of energy propagating
along the CH which is of interest to us here. If energy is
transported along the CH the energy density � of the null
layer must be positive definite. It follows from the con-
tinuity of the boundary layer from Eqs. (8) and (9) that

r 
=

 2
m

Cauchy Horizon

λ < 1/8

λ
λ

+

v = T, Schwarzschild

v = 0, M
inkowski

Incoming
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r
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FIG. 1. Naked singularity forming in the radiation collapse.
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½M�
4	r2

¼ uþ
�þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8��

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8�þ

p
8	r2

�
:

Hence, CH can carry energy to either a local or a distant
observer. Therefore, as a result the rate of collapse slows
down (�� < �þ), which results in a net positive energy
density on the CH. Furthermore, this surface energy on the
CH has a clear physical interpretation. To see this, consider
the motion of a freely falling timelike observer (four
velocity ua, uaua ¼ �1) in Vaidya spacetime given in
Eq. (1) (analysis of timelike trajectories in Vaidya space-
time has been worked out [22]).

ua � eað1Þ ¼
�
P

r
;
ð1� �xÞP

2r
� r

2P
; 0; 0

�
;

P ¼ ðc� sÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðc� sÞ2 þ r2xð2þ �x2 � xÞp
ð2þ �x2 � xÞ ; region II:

Where c is a constant labeling different timelike geo-
desics and s is the affine parameter. Positive sign solutions
terminate at the singularity r ¼ u ¼ 0 with a positive
definite tangent x ¼ �, and hence do not intersect the
CH. For all timelike radial observers intersecting the CH
we have

uak
a ¼ r

ð1� �xÞP ; (16)

and therefore at the CH we have

½uaka� ¼ ½uaeaðAÞ� ¼ 0: (17)

It follows that in imploding null dust collapse, CH can
be immersed between two Vaidya spacetimes (with linear
mass function) with the parameter �� � �þ. In the case
when �þ ¼ ��, the matching across � is smooth and no
energy is carried along the first ray. In the case otherwise,
the rate of collapse slows down and facilitates the positive
surface density on the null boundary.

It has been shown that there is a family of outgoing
geodesics which terminate in the past at the singularity
with a definite tangent x ¼ �> �. The path of such out-
going null geodesics has been calculated earlier (see [23])
and is given by Eq. (5). The problem can be considerably
simplified if we can write the metric in terms of outgoing
null geodesics. In this representation, CH corresponds to a
constant value of one of the coordinates. Let us consider a
general spherically symmetric spacetime M� given by

ds2 ¼ �e2�
�
1� 2m

r

�
dV2 þ 2
e�dVdrþ r2d�2: (18)

Here c�, m� are functions of V� and r. Null layers given
by V� ¼ constant are outgoing if 
 ¼ �1 and ingoing if

 ¼ 1. The density and pressure of the null shell surface
immersed in the two spacetimes is

� ¼ �ABCAB ¼ �

½m�
4	r2

; p ¼ �

1

8	

@c

@r
: (19)

In order to analyze the case of family of null geodesics,
let us consider a coordinate transformation for the space-
time given in Eq. (1) v ! V, r ! r. The Vaidya metric the
for spacetime M� now becomes

ds2 ¼ �ec
�
ec

�
1� 2mðV; rÞ

r

�
dV2 þ 2dVdr

�
þ r2d�2;

with metric function expðc Þ

ec� ¼ r��ð�� � x�Þðx� � ��Þ
V�ð1� ��x�Þ ; (20)

where 2m�ðV�; rÞ ¼ ��v�ðV�; rÞ and c� ¼ c�ðV�; rÞ.
Here V� ¼ constant are outgoing singular geodesics with
normal ka ¼ �a

r . Hence outgoing singular null layers im-
mersed between the two Vaidya spacetimes with different
mass functions (�� < �þ < 1

8 ) have nonvanishing surface

density � and p, allowing energy to escape. Though for
lightlike shells there is no rest frame and therefore� and p
cannot be given an absolute meaning as surface density and
pressure, nonetheless, as rightly pointed out by Israel, they
serve perfectly well to determine the results of measure-
ment by any observer In this regard, as shown by Israel that
for a radially freely falling observer momentum normal to
the shell is continuous and the energy density associated
with the shell as measured by this radially freely falling
observer (ua ¼ dxa=d� ¼ ½ _u; _r; 0; 0�) is given by

Tab
� uaub ¼ ½m�

4	r2
�ð�ÞðkauaÞ (21)

and is accompanied by equal energy flux. Here � ¼ 0 is the
equation of �.
We briefly consider now another scenario, namely, the

inhomogeneous dust collapse. The metric describing a
spherically symmetric spacetime is given by

ds2 ¼ �dt2 þ R02

1þ f
dr2 þ R2d�2; (22)

where d�2 ¼ d�2 þ sin2�d�2, and R ¼ Rðt; rÞ and f ¼
fðt; rÞ are arbitrary functions of t and r. The metric in (22)
has to satisfy field equations which can be put in a form

_R ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
fþ F

R

s
(23)

The functions F ¼ FðrÞ, R ¼ Rðt; rÞ, and fðrÞ>�1 are
C2 functions throughout the cloud. Notation (’) and ð_Þ are
used to denote partial differentiation with respect to r and t.
Consider marginally bound case fðrÞ ¼ 0 and FðrÞ ¼ F0r.
Existence of a naked singularity in this case (�< 3) is well
established (see [11,12]). Function F ¼ FðrÞ is interpreted
as the mass function and for physical reasons FðrÞ � 0,
F0ðrÞ � 0, and gives mass enclosed in a given shell of
comoving radius r. The CH is a null ray R ¼ x0r where
x ¼ x0 is lowest of the real and positive root of the alge-
braic equation
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2x4 þ x3
ffiffiffiffiffiffi
F0

p � 2xþ 2
ffiffiffiffiffiffi
F0

p ¼ 0: (24)

The two dust spacetimesM� separating the first singular
light ray (CH) be given by respective mass functions,
F�ðrÞ ¼ F0r before, and FþðrÞ ¼ rP2ðrÞ after, where
PðrÞ satisfies

Pðaþ bPÞc ¼ F1r; (25)

where F1 is a constant and coefficients can be deter-

mined as a ¼ 2x3=20 , b ¼ ðx3=20 þ 2Þ=ðx3=20 � 1Þ, and c ¼
�3x3=20 =ðx3=20 þ 2Þ.
An argument similar to one for Vaidya model shows that

CH can be immersed between these two different dust
solutions with a nonvanishing surface energy density given
by different values of constants F1 and F0.
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